Pharmacological or genetic orexin1 receptor inhibition attenuates MK-801 induced glutamate release in mouse cortex
نویسندگان
چکیده
The orexin/hypocretin neuropeptides are produced by a cluster of neurons within the lateral posterior hypothalamus and participate in neuronal regulation by activating their receptors (OX1 and OX2 receptors). The orexin system projects widely through the brain and functions as an interface between multiple regulatory systems including wakefulness, energy balance, stress, reward, and emotion. Recent studies have demonstrated that orexins and glutamate interact at the synaptic level and that orexins facilitate glutamate actions. We tested the hypothesis that orexins modulate glutamate signaling via OX1 receptors by monitoring levels of glutamate in frontal cortex of freely moving mice using enzyme coated biosensors under inhibited OX1 receptor conditions. MK-801, an NMDA receptor antagonist, was administered subcutaneously (0.178 mg/kg) to indirectly disinhibit pyramidal neurons and therefore increase cortical glutamate release. In wild-type mice, pretreatment with the OX1 receptor antagonist GSK-1059865 (10 mg/kg S.C.) which had no effect by itself, significantly attenuated the cortical glutamate release elicited by MK-801. OX1 receptor knockout mice had a blunted glutamate release response to MK-801 and exhibited about half of the glutamate release observed in wild-type mice in agreement with the data obtained with transient blockade of OX1 receptors. These results indicate that pharmacological (transient) or genetic (permanent) inhibition of the OX1 receptor similarly interfere with glutamatergic function in the cortex. Selectively targeting the OX1 receptor with an antagonist may normalize hyperglutamatergic states and thus may represent a novel therapeutic strategy for the treatment of various psychiatric disorders associated with hyperactive states.
منابع مشابه
Pharmacological Blockade of Serotonin 5-HT7 Receptor Reverses Working Memory Deficits in Rats by Normalizing Cortical Glutamate Neurotransmission
The role of 5-HT₇ receptor has been demonstrated in various animal models of mood disorders; however its function in cognition remains largely speculative. This study evaluates the effects of SB-269970, a selective 5-HT₇ antagonist, in a translational model of working memory deficit and investigates whether it modulates cortical glutamate and/or dopamine neurotransmission in rats. The effect of...
متن کاملRole of different monoamine receptors controlling MK-801-induced release of serotonin and glutamate in the medial prefrontal cortex: relevance for antipsychotic action.
Several studies have demonstrated that systemically administered N-methyl-d-aspartate (NMDA) receptor antagonists increase serotonin (5-HT) and glutamate release in the medial prefrontal cortex (mPFC). Previously we showed that the perfusion of clozapine in the mPFC prevented the MK-801-induced increase in extracellular glutamate and 5-HT whereas haloperidol blocked only the effect of MK-801 on...
متن کاملUnraveling monoamine receptors involved in the action of typical and atypical antipsychotics on glutamatergic and serotonergic transmission in prefrontal cortex.
The systemic administration of noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists has been considered as a pharmacological model of schizophrenia. In the present work, we used in vivo microdialysis to examine: first, the effects of MK-801, on the efflux of glutamate and serotonin (5-HT) in the medial prefrontal cortex (mPFC) of the rat; second, whether the MK-801-induced changes in...
متن کاملMobility of NMDA autoreceptors but not postsynaptic receptors at glutamate synapses in the rat entorhinal cortex.
NMDA receptors (NMDAr) are known to undergo recycling and lateral diffusion in postsynaptic spines and dendrites. However, NMDAr are also present as autoreceptors on glutamate terminals, where they act to facilitate glutamate release, but it is not known whether these receptors are also mobile. We have used functional pharmacological approaches to examine whether NMDA receptors at excitatory sy...
متن کاملTreatment with 1,2,3,4,-tetrahydroisoquinoline affects glutamate release in the striatum but not the binding of [3H]MK-801 to NMDA receptors in the dopaminergic structures of the rat brain.
Overactivity of the glutamatergic system is thought to be closely related to the pathogenesis of Parkinson's disease. This study aimed to examine the effect of acute administration of 1,2,3,4-tetrahydroisoquinoline (TIQ), an endo- and exogenous amine suspected of inducing parkinsonism in humans on the release of glutamate in the striatum as well as to assess the impact of its chronic treatment ...
متن کامل